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An inverse aeroacoustic model on rotor wake/stator interaction is proposed based on the
linearized Euler equations. The sound "eld is related to the pressure distribution on the
stator surface in the form of a Fredholm integral equation of the "rst kind which is
a well-known ill-posed problem. Since the sound "eld is fully speci"ed, numerical inversion
allows the reconstruction of the pressure distribution on the stator surface. For solving the
discrete ill-posed problem, the singular-value decomposition technique coupled with the
Tikhonov regularization method is applied to stabilize the solution. The optimal
regularization parameter is chosen by the generalized cross-validation criterion and the
discrete Picard condition is employed to analyze the ill-posedness of the inverse problem.
Numerical results show that the reconstruction is fairly good when the signal-to-noise ratio
is not very low. The results become inaccurate when the noise dominates over the observer
signal. In addition, numerical results also indicate the importance of the reduced frequency.
The higher the reduced frequency, the better the reconstruction results.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Over the past few decades, the prediction and control of ducted fan noise has been one of the
most important subjects in aeroacoustics. Among various kinds of sound sources of ducted
fan, the rotor/stator interaction is known as one of the most important sources. Many
theoretical and numerical methods have been proposed for predicting the noise generated
from the rotor wake impinging on stator surfaces. Usually, most of the methods require the
pressure distribution on stator surfaces either from experimental measurements or from
numerical simulations. In principle, the most accurate and reliable way is to embed pressure
sensors #ush on the surfaces of stators. Unfortunately, it is pretty expensive as well as time
consuming to carry out an experiment in terms of a very thin blade with three-dimensional
(3-D) complex geometry. Therefore, it would be extremely valuable to develop some
non-contact measurement techniques.
During the past few years, several inverse aeroacoustic problems have been investigated

arising from various motivations. For example, Grace et al. [1] proposed an inversion
model of gust/plate interaction based on solving the Helmholtz equation. The unsteady
pressures on a zero-thickness plate were reconstructed successfully using sound "eld data.
Very recently, this technique has been extended for a rectangular wing [2]. Yoon and
Nelson [3] discussed an inversion technique aimed at active noise control of motionless
sound source, detailed technical issues and some extended work can be found in reference [4].
Li [5] and Li and Zhou [6] studied the inverse problem of Ffowcs Williams}Hawkings
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Figure 1. The co-ordinate of the cascade.
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(FW}H) equation. It has been shown that the pressure distribution on an arbitrarily moving
body with 3-D complex geometry could be reconstructed using "nite number of acoustic
data. Based on the inversion theory of the FW}H equation, a technique for spatial
transformation of sound "eld and a new strategy for active noise control was also proposed,
applicable to moving sound sources [5].
Di!erent from previous studies, this paper proposes an inverse technique for rotor

wake/stator interaction noise. The sound "eld is related with the unsteady pressure
distributed on the stator surface in the form of a Fredholm integral equation of the "rst
kind. Once the sound "eld is fully speci"ed, numerical inversion allows the reconstruction of
the pressure distribution on the stator. The main di$culty in solving the inverse problem is
that it is ill-posed, which means that small errors in observer data may lead to very large
solution errors unless some stability constraints are imposed. This paper will demonstrate
that the Tikhonov regularization method is e!ective in coping with the ill-posed problem.
Finally, some numerical results are presented to show the feasibility of the method.

2. BASIC FORMULATION

Assume that there is an upstream subsonic #ow where the #uid is inviscid, non-heat
conducting, and compressible. After making small perturbation hypothesis, the governing
equations are simpli"ed to linearized Euler equations
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The above equation can be transformed into the following wave equation:
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Introduce the following transformation:
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the propagating direction of upstream disturbance and mean #ow velocity, k� the incoming
#ow frequency, and M

�
the incoming #ow Mach number (Figure 2).

The 2-D Helmholtz equation can be derived as follows:

��pN
���

#

��pN
���

#K�� pN "0, (3)

where

k�"
k� b
��
�

�(M�
�
!sin� �

�
) ,

p
 (�, �)"p exp� i��M�
�
x
�
#k�;

�
�!

k� b sin �
�

�
�

x
��� .

Following Sun et al. [7] (the only di!erence is that here we neglect the e!ect of swept
angle), the radiated sound "eld can be expressed in the following form:
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Figure 2. Rotor and stator.
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In the above formulas,  and � are the stagger angle of stator and rotor, respectively,
f
�
(K� sin�$

�
) the Fourier transformation result of the unsteady pressure di!erence between

upper and lower surfaces, d the blade spacing of stator, � the interblade phase angle (the
phase di!erence of upwash velocity between neighbouring blades), p$ the sound pressure,
p$

�
the sound pressure of each acoustic mode, the subscripts &&#'' and &&!'' stand for the

sound waves travelling downstream and upstream, respectively, andm
�
andm

�
are the wave

numbers that satisfy the cut-on condition [8]. �p denotes the unsteady pressure di!erence
between the upper and lower stator surfaces.
As for rotor wake/stator interaction, since every rotor blade sheds a wake, the #ow "eld

due to all wakes is the superposition of in"nite rotor blade wakes, which can be expanded as
Fourier series [9]:
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In the above formula, =

�
is the maximum wake perturbation velocity, d

�
the rotor blade

spacing, l the wake halfwidth, and � is a parameter that can be adjusted for optimum data "t
[9]. B and < are the number of rotor blade and stator blade, respectively, and q the
harmonic number. For such kind of disturbing waves, the interblade phase angle
�"2�qB/<.
Dividing the chord into N elements, the discrete form of equation (5) is
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The exponent is associated with changes in retarded time [8].
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3. ANALYSIS AND SOLUTION OF INVERSE PROBLEMS

For the analysis and solution of the inverse problem described above, equation (7) is
further written in an abstract form as

Ax"b, (8)

where A is the model matrix with an overdetermined dimension with m*n, x corresponds
to the unsteady pressure on the stator surface, and b stands for the sound pressure of "nite
number of observing points.
Following the work of Li [5] and Li and Zhou [6], we use Tikhonov regularization [10]

coupled with singular-value decomposition [11]. The essence of this approach is to "nd the
minimum norm solution of the following least-squares problem:
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where � controls the weight given to a minimization of the seminorm �¸x�
�
of the solution

relative to minimization of the residual norm �Ax!b�
�
.

Singular-value decomposition (SVD) is a widely used technique for decomposing an
ill-conditioned matrix which can be represented in the following form:

A";�<"

�
�
	��

u
	
�
	
v�
	
, (10)

where ;"(u
�
,2, u

�
) and <"(v

�
,2, v

�
) are matrices with orthonormal columns,

;�;"I
�
, <�<"I

�
, and T denotes transposition. � is an m�n diagonal matrix which

contains the singular values in descending order of magnitude progressing down the
diagonal, i.e.,
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For Tikhonov regularization, ¸"I
�
, the solution of equation (8) can be expressed as

x
�
g"

�
�
	��

�
	

u�
	
b

��
	
#��

v
	
. (12)

It is very clear to see from equation (12) how the parameter � can deviate the singularities:
even if �

	
decays to zero, division by zero does not occur. For an ill-conditioning matrix A,

a cluster of singular values are very close to zero, some of them are dominated by the
round-o! errors of the computer, they will make the solution oscillate. The function of the
regularization parameter � is to "lter out the in#uence of these components, thus making
the solution stable.
There is an underlying assumption of using the Tikhonov regularization method which

states that the errors on the right-hand side are unbiased and their covariance matrix is
proportional to the identity matrix. Furthermore, no matter which kind of regularization
method is used, it must satisfy the discrete Picard condition (DPC) [12] which states that
the Fourier coe$cients �u�

	
b� � decay to zero faster than the generalized singular value �

	
. For

Tikhonov regularization, ¸"I
�
and �

	
"�

	
. The DPC plays an important role in the

analysis of the discrete ill-posed problems. When the DPC cannot be satis"ed, the
reconstruction results will deviate from the exact solution a lot even if regularization
methods have been utilized.
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In the above Tikhonov regularization method, the choice of the regularization parameter
� is undoubtedly of great importance. A suitable regularization parameter can
appropriately "lter out the in#uence of perturbed errors, thus making the solution stable
and reasonable. In this paper, we employ the generalized cross-validation (GCV) criterion
[13] to choose the regularization parameter. The basic formula of GCV can be expressed as
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in the case of Tikhonov regularization,
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The optimal value of regularization parameter �
��
is determined by minimization of <(�)

once the SVD of P(�) has been completed equation (15) indicates that for most cases,
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into equation (12), the optimal regularization solution x

�
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be obtained.

4. RESULTS AND DISCUSSION

To demonstrate the feasibility of the method proposed above, several numerical examples
are presented. The main parameters of blades are: rotor blade number is 14, stator blade
number is 18, rotating speed of the rotor is 917)56 rad/s, spacing to chord ratio of stator is
3)8, stagger angles of rotor and stator are �/6 and 0 respectively. The observer numbers are
10 and 7 in the upstream and downstream respectively. The grid points number on the
stator surface is 30.
The following procedure is used in numerical tests:
(1) Calculate the unsteady pressure distribution on blades based on the work of Sun et al.
[7].

(2) The sound "eld is predicted by equation (4).
(3) The blade surface unsteady pressure distribution is reconstructed using equation (12).

Since the sound energy of rotor wake/stator interaction noise is mainly distributed on the
blade passing frequency (BPF) and its second harmonic (2BPF), we focus our work on the
inversion of the "rst and second harmonics of BPF of the unsteady pressures.
To simulate the measurement errors as in real physical cases, random errors are added to

exact sound signals as
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where [p]
�
is the simulated sound pressure, [p]

�
the exact sound pressure which is obtained

from equation (4), and e the perturbation vector which has zero mean and covariance
matrix ��g "I
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. The signal-to-noise ratio is de"ned as follows:
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Figure 3. The discrete Picard conditions: **, �
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For the case of blade passing frequency (BPF), "rst of all, we analyze how well the DPC is
satis"ed for di!erent S/N as shown in Figure 3. In this tests case, for large signal-to-noise
ratio (S/N"87)8), the Fourier coe$cients decay to zero faster than the singular values in



Figure 4. Generalized cross-validation functions: **, S/N"87)8; �"2)76E!2; - - - -, S/N"21)95;
�"7)73E!2; ) ) ) ) , S/N"8)78; �"2)33E!1.
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the left part of the singular values curve (for i)53). This means the DPC has been satis"ed
rather well which renders the regularization parameter �

��
chosen by GCV criterion

capable of removing the perturbation and round-o! errors e!ectively. A basic principle is
that the regularization parameter �

��
increases with signal-to-noise ratio decreasing, see

Figure 4. From this it is easy to understand that a stable solution can be obtained only when
the perturbation components have been "ltered out completely. Figure 5(a}f ) shows the
reconstruction results for the blade passing frequency component of the unsteady pressure.
In order to include the e!ects of the higher order evanescent-like waves, the total number of
acoustic modes included in the calculation was 101 (n"$50). The results indeed agree
fairly well with the exact solution for large S/N. With S/N decreasing, the Fourier
components satisfying the DPC are also decreasing, thus the satisfaction condition of
discrete Picard condition is becoming worse. For S/N"21)95, the number of Fourier
coe$cients of the model matrix that decay to zero faster than singular values is smaller than
before (i)42); this means the DPC cannot be satis"ed well which results in a deviation
between the reconstruction and the exact solution. For S/N"8)78, the satisfaction
condition of DPC is becoming even worse, large errors are expected to occur in the
reconstruction results. For low signal-to-noise ratio, since the regularization parameter
cannot e!ectively remove the perturbation errors, some numerical oscillations occur in the
reconstruction especially in the leading edge and trailing edge.
Figure 6(a}f ) gives the reconstruction results for 2BPF. A remarkable phenomenon is

that the inversion results are much better under the same signal-to-noise ratio. This is
because with frequency increasing, more acoustic modes can satisfy the cut-on condition [7]
and propagate to the far "eld so that the sound pressure obtained from observers will
contain more information about the sound source. This can also be explained as follows: for
lower frequency, the exponent term in equation (7) which is associated with the changes in
retarded time will show small variation when the source point co-ordinate � on the cascade
varies from!1 to 1. This means the far "eld does not depend on the details of the unsteady



Figure 5. Comparison of reconstructions under di!erent S/N for BPF: (a, b) **, exact solution; - - - - -,
S/N"87)8; (c, d) **, exact solution; - - - - - -, S/N"21)95; (e, f ) **, exact solution; - - - - - -, S/N"8)78.
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pressure on the stator surface so that the sound pressure information obtained from
observers is not enough to discern the details of the sound source. A similar phenomenon
has been observed by Patrick et al. [14] whose work is focused on the inverse aeroacoustic
problem on gust/plate interaction.
From the numerical results, we can see that the reconstruction results are rather good

when signal-to-noise ratio is not very low. However, the results are still dissatisfactory for
lower signal-to-noise ratio which remains a challenging task worthy of further research.



Figure 6. Comparison of reconstructions under di!erent S/N for 2BPF: (a, b) **, exact solution; - - - - -,
S/N"87)7; (c, d) **, exact solution; - - - - -, S/N"21)87; (e, f ) **, exact solution; - - - - -, S/N"8)77.
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5. CONCLUDING REMARKS

An inverse aeroacoustic model on rotor wake/stator interaction is proposed in this paper.
Based on the linearized Euler equations, the unsteady pressure distribution on the stator
surface is related with the sound "eld of a "nite number of observers in the form of
a Fredholm integral equation of the "rst kind. Once the sound "eld is known, the unsteady
pressure on the stator surface can be obtained by numerical inversion. Computation results
demonstrate the feasibility of the inversion model and the reconstruction method.
The main di$culty in solving the inverse problem is its ill-posedness. To overcome

this di$culty, the Tikhonov regularization method combined with singular-valve
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decomposition is employed to stabilize the solution. The main idea of this method is to "lter
out the in#uence of perturbation errors that are mainly dominated by the round-o! errors
of the computer, thus making the solution stable. An investigation of how heavy the
ill-posed inverse problems are is discussed using the discrete Picard condition. Numerical
results show that the reconstruction accuracy depends to a great extent on how well the
discrete Picard condition can be satis"ed.
Numerical results show that the reconstruction results are accurate enough when the

signal-to-noise ratio is not very low. The reconstruction results become inaccurate when the
perturbation errors dominate over the observer data. In addition, the comparison of
reconstruction results of BPF and 2BPF of unsteady pressure shows that the reduced
frequency has a great e!ect on the reconstruction results.
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